login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287442
Numbers k = concat( x, y ), not ending in 0, such that x * y divides k.
1
11, 12, 15, 24, 36, 101, 102, 104, 105, 125, 208, 306, 315, 735, 1001, 1002, 1004, 1005, 1008, 1025, 1125, 1352, 1734, 2016, 3006, 3015, 3024, 3375, 6048, 7007, 7056, 9072, 10001, 10002, 10004, 10005, 10008, 10016, 10025, 10125, 10625, 11011, 13013, 14112, 18144
OFFSET
1,1
COMMENTS
Numbers ending in zero are not listed because of the form a(n) * 10^k, with k>0.
EXAMPLE
36 = concat(3,6) and 36 / (3*6) = 2;
3375 = concat(3,375) and 3375 / (3*375) = 3;
18144 = concat(18,144) and 18144 / (18*144) = 7.
MAPLE
P:=proc(q) local a, k, n; for n from 1 to q do if not n mod 10=0 then
for k from 1 to ilog10(n) do a:=n/((n mod 10^k)*trunc(n/10^k));
if type(a, integer) then print(n); break; fi; od; fi; od; end: P(10^9);
MATHEMATICA
cxyQ[n_]:=Module[{idn=IntegerDigits[n]}, idn[[-1]]!=0&&AnyTrue[ Table[ FromDigits/@TakeDrop[idn, k], {k, Length[idn]-1}], Divisible[n, Times@@#]&]]; Select[Range[20000], cxyQ] (* The program uses the AnyTrue function from Mathematica version 10 *)(* Harvey P. Dale, Mar 09 2018 *)
CROSSREFS
Sequence in context: A249766 A113600 A255725 * A255726 A347541 A097158
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, May 25 2017
STATUS
approved