login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255725
Numbers n = concat(x,y) such that the product x*y | n. Leading zeros in y allowed.
5
11, 12, 15, 24, 36, 101, 102, 104, 105, 110, 120, 125, 150, 208, 240, 306, 315, 360, 735, 1001, 1002, 1004, 1005, 1008, 1010, 1020, 1025, 1040, 1050, 1100, 1125, 1200, 1250, 1352, 1500, 1734, 2016, 2080, 2400, 3006, 3015, 3024, 3060, 3150, 3375, 3600, 6048, 7007
OFFSET
1,1
COMMENTS
There are numbers that present an additional quasi-solution. For instance, consider 26733375: it is in the sequence because 26733375 / (267 * 33375) = 3 but 26733375 / (2673337 * 5) = 2.000000374... is close to being an integer, too.
Other examples:
52116672 / (521 * 16672) = 6 and 52116672 / (5211667 * 2) = 5.000000191...
138911112 / (1389 * 11112) = 9 and 138911112 / (13891111 * 2) = 5.0000000719...
Is there any number that admits two or more different concatenations whose multiplications divide the number itself (no term up to 3*10^9) ?
LINKS
Paolo P. Lava and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from Paolo P. Lava)
EXAMPLE
15 = concat(1,5); 1*5 = 5 and 15 / 5 = 3.
36 = concat(3,6); 3*6 = 18 and 36 / 18 = 2.
9072 = concat(9,072); 9*72 = 648 and 9072 / 648 = 14.
MAPLE
with(numtheory); P:=proc(q) local a, b, i, n;
for n from 1 to q do for i from 1 to ilog10(n) do
a:=trunc(n/10^i); b:=n-a*10^i;
if a*b>0 then if type(n/(a*b), integer) then print(n);
fi; fi; od; od; end: P(10^9);
MATHEMATICA
v[e_]:=Block[{x, y, k}, y+10^e*x /. List@ ToRules@ Reduce[k*x*y == x*10^e+y && k>=0 && x>0 && 0 < y < 10^e, {k, x, y}, Integers]]; upto[nd_] := Select[ Union@ Flatten@ Array[v, nd], # < 10^nd &]; upto[10] (* terms < 10^10, Giovanni Resta, May 26 2015 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Apr 01 2015
STATUS
approved