login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287341
1-limiting word of the morphism 0->11, 1->20, 2->0.
6
1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, 1, 1, 0, 1, 1, 2, 0, 2, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, 1, 1, 0, 1, 1, 2, 0, 2, 0, 0, 1, 1, 0, 1, 1, 2, 0, 2, 0, 0, 1, 1, 0, 1, 1, 2, 0, 2, 0, 0, 1, 1, 0, 1, 1, 0, 1
OFFSET
1,3
COMMENTS
Starting with 0, the first 5 iterations of the morphism yield words shown here:
1st: 11
2nd: 2020
3rd: 011011
4th: 112020112020
5th: 20200110112020011011
The 1-limiting word is the limit of the words for which the number of iterations congruent to 1 mod 3.
Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively. Then 1/U + 1/V + 1/W = 1, where
U = 2.7692923542386314152404094643350334926...,
V = 2.4498438945029551040577327454145475624...,
W = 4.3344900716222708116779374775820643087...
If n >=2, then u(n) - u(n-1) is in {1,2,3,4,6}, v(n) - v(n-1) is in {1,2,5,6,10}, and w(n) - w(n-1) is in {2,4,8,10,16}.
LINKS
EXAMPLE
3rd iterate: 011011
6th iterate: 011011112020112020011011112020112020
MATHEMATICA
s = Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {2, 0}, 2 -> 0}] &, {0}, 10] (* A287341 *)
Flatten[Position[s, 0]] (* A287342 *)
Flatten[Position[s, 1]] (* A287343 *)
Flatten[Position[s, 2]] (* A287344 *)
CROSSREFS
Cf. A287337 (0-limiting word), A287342, A287343, A287344, A287345 (2-limiting word).
Sequence in context: A264049 A287337 A026612 * A282432 A046922 A193779
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 24 2017
STATUS
approved