login
A287152
Number T(n,k) of tilings of a 2 X n X n box using k bricks of shape 2 X 1 X 1 and 2*(n^2-k) bricks of shape 1 X 1 X 1; triangle T(n,k), n>=0, 0<=k<=n^2, read by rows.
3
1, 1, 1, 1, 12, 42, 44, 9, 1, 33, 436, 2984, 11434, 24766, 29180, 16984, 3993, 229, 1, 64, 1816, 30208, 328214, 2456736, 13022504, 49492032, 135062729, 262610832, 357580896, 331384336, 200032432, 73483328, 14707328, 1308928, 32000, 1, 105, 5112, 153364, 3178256
OFFSET
0,5
LINKS
Alois P. Heinz, Rows n = 0..8, flattened
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 12, 42, 44, 9;
1, 33, 436, 2984, 11434, 24766, 29180, 16984, 3993, 229;
CROSSREFS
Columns k=0-1 give: A000012, A051624.
Row sums give A287153.
T(n,n^2) gives A181205.
Sequence in context: A244793 A218712 A022672 * A109275 A360961 A241854
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, May 20 2017
STATUS
approved