login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 0, a(1) = 1; a(2*n) = gpf(a(n)), a(2*n+1) = a(n) + a(n+1), where gpf(a(n)) is the greatest prime dividing a(n) for a(n) >= 2 and 1 if a(n) = 1 (A006530).
1

%I #6 May 18 2017 21:50:34

%S 0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,2,7,3,8,5,7,2,7,5,8,3,7,2,5,1,6,

%T 5,7,2,9,7,10,3,11,2,13,5,12,7,9,2,9,7,12,5,13,2,11,3,10,7,9,2,7,5,6,

%U 1,7,3,11,5,12,7,9,2,11,3,16,7,17,5,13,3,14,11,13,2,15,13,18,5,17,3,19,7,16,3,11,2,11,3,16,7

%N a(0) = 0, a(1) = 1; a(2*n) = gpf(a(n)), a(2*n+1) = a(n) + a(n+1), where gpf(a(n)) is the greatest prime dividing a(n) for a(n) >= 2 and 1 if a(n) = 1 (A006530).

%C A variation on Stern's diatomic sequence.

%H Michael Gilleland, <a href="/selfsimilar.html">Some Self-Similar Integer Sequences</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GreatestPrimeFactor.html">Greatest Prime Factor</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SternsDiatomicSeries.html">Stern's Diatomic Series</a>

%H <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a>

%e a(0) = 0;

%e a(1) = 1;

%e a(2) = a(2*1) = gpf(a(1)) = 1;

%e a(3) = a(2*1+1) = a(1) + a(2) = 2;

%e a(4) = a(2*2) = gpf(a(2)) = 1;

%e a(5) = a(2*2+1) = a(2) + a(3) = 3;

%e a(6) = a(2*3) = gpf(a(3)) = 2, etc.

%t a[0] = 0; a[1] = 1; a[n_] := If[EvenQ[n], FactorInteger[a[n/2]][[-1, 1]], a[(n - 1)/2] + a[(n + 1)/2]]; Table[a[n], {n, 0, 100}]

%Y Cf. A002487, A006530, A175723, A177904.

%K nonn

%O 0,4

%A _Ilya Gutkovskiy_, May 18 2017