login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287002
Start with 0 and repeatedly substitute 0->01, 1->20, 2->1.
6
0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 1
OFFSET
1,3
COMMENTS
A fixed point of the morphism 0->01, 1->20, 2->1. Let u be the sequence of positions of 0, and likewise, v for 1 and w for 2. Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively. Then 1/U + 1/V + 1/W = 1, where
U = 2.246979603717467061050009768008...,
V = 2.801937735804838252472204639014...,
W = 5.048917339522305313522214407023...
If n >=2, then u(n) - u(n-1) is in {1,2,3}, v(n) - v(n-1) is in {2,3,4}, and w(n) - w(n-1) is in {4,5,7}.
MATHEMATICA
s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {2, 0}, 2 -> 1}] &, {0}, 10] (* A287002 *)
Flatten[Position[s, 0]] (* A287003 *)
Flatten[Position[s, 1]] (* A287004 *)
Flatten[Position[s, 2]] (* A287081 *)
SubstitutionSystem[{0->{0, 1}, 1->{2, 0}, 2->{1}}, {0}, {10}][[1]] (* Harvey P. Dale, Feb 27 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 21 2017
STATUS
approved