login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286783
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
12
1, 3, 15, 5, 105, 77, 7, 945, 1044, 234, 9, 10395, 14784, 5390, 550, 11, 135135, 227877, 113126, 19760, 1105, 13, 2027025, 3862305, 2371845, 586425, 58275, 1995, 15, 34459425, 71983440, 51607716, 16271380, 2356234, 147560, 3332, 17, 654729075, 1469813400, 1185214452, 446964322, 84487110, 7888876, 333564, 5244, 19, 13749310575, 32718512925, 28937407212, 12516198870, 2884205268, 358182846, 23006928, 690480, 7875, 21
OFFSET
0,2
COMMENTS
Row n>0 contains n terms.
T(n,k) is the number of Feynman's diagrams with k fermionic loops in the order n of the perturbative expansion in dimension zero for the polarization function in a many-body theory of fermions with two-body interaction (see Molinari link).
LINKS
Gheorghe Coserea, Rows n=0..123, flattened
Luca G. Molinari, Hedin's equations and enumeration of Feynman's diagrams, arXiv:cond-mat/0401500 [cond-mat.str-el], 2005.
FORMULA
A(x;t) = Sum_{n>=0} P_n(t)*x^n = (1 + x*s + 2*x^2*deriv(s,x))/(1-x*s)^2, where s(x;t) = A286781(x;t) and P_n(t) = Sum_{k=0..n-1} T(n,k)*t^k for n>0.
A001147(n+1)=T(n,0), A001700(n)=P_n(-1), A286794(n)=P_n(1).
EXAMPLE
A(x;t) = 1 + 3*x + (15 + 5*t)*x^2 + (105 + 77*t + 7*t^2)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7]
[0] 1;
[1] 3;
[2] 15, 5;
[3] 105, 77, 7;
[4] 945, 1044, 234, 9;
[5] 10395, 14784, 5390, 550, 11;
[6] 135135, 227877, 113126, 19760, 1105, 13;
[7] 2027025, 3862305, 2371845, 586425, 58275, 1995, 15;
[8] 34459425, 71983440, 51607716, 16271380, 2356234, 147560, 3332, 17;
[9] ...
MATHEMATICA
max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*y0[x, t] + 2*x^2*D[y0[x, t], x])*(1 - x*y0[x, t]*(1 - t))/(1 - x*y0[x, t])^2 + O[x]^n // Normal; y0[x_, t_] = y1[x, t] // Simplify];
s = y0[x, t];
se = (1 + x*s + 2*x^2*D[s, x])/(1 - x*s)^2 + O[x]^max // Normal;
row[n_] := row[n] = CoefficientList[Coefficient[se, x, n], t];
T[0, 0] = 1; T[n_, k_] := row[n][[k + 1]];
Table[T[n, k], {n, 0, max-1}, {k, 0, If[n == 0, 0, n-1]}] // Flatten (* Jean-François Alcover, May 19 2017, adapted from PARI *)
PROG
(PARI)
A286781_ser(N, t='t) = {
my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);
while(n++,
y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;
if (y1 == y0, break()); y0 = y1; );
y0;
};
A286783_ser(N, t='t) = {
my(s=A286781_ser(N, t)); (1 + x*s + 2*x^2*deriv(s, 'x))/(1-x*s)^2;
};
concat(apply(p->Vecrev(p), Vec(A286783_ser(10))))
CROSSREFS
Sequence in context: A375889 A088558 A212203 * A351697 A012881 A248031
KEYWORD
nonn,tabf
AUTHOR
Gheorghe Coserea, May 14 2017
STATUS
approved