login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that appear in A195441 at least once for two consecutive indices.
5

%I #26 Sep 10 2024 08:16:06

%S 1,30,210,330,2310,3990,6090,14790,43890,66990,82110,125970,144210,

%T 181830,881790,1009470,1067430,1217370,2284590,2381190,17687670,

%U 18888870,26265030,35068110,39544890,47763870,115223790,127652070,406816410,497668710,741110370,1024748670

%N Numbers that appear in A195441 at least once for two consecutive indices.

%C The sequence is infinite; see Cor. 3 in "The denominators of power sums of arithmetic progressions". - _Bernd C. Kellner_ and _Jonathan Sondow_, May 24 2017

%H Bernd C. Kellner, <a href="https://doi.org/10.1016/j.jnt.2017.03.020">On a product of certain primes</a>, J. Number Theory 179 (2017), 126-141; arXiv:<a href="https://arxiv.org/abs/1705.04303">1705.04303</a> [math.NT], 2017.

%H Bernd C. Kellner and Jonathan Sondow, <a href="https://doi.org/10.4169/amer.math.monthly.124.8.695">Power-Sum Denominators</a>, Amer. Math. Monthly 124 (2017), 695-709; arXiv:<a href="https://arxiv.org/abs/1705.03857">1705.03857</a> [math.NT], 2017.

%H Bernd C. Kellner and Jonathan Sondow, <a href="https://doi.org/10.5281/zenodo.10682734">The denominators of power sums of arithmetic progressions</a>, Integers 18 (2018), Article #A95, 17 pp.; arXiv:<a href="https://arxiv.org/abs/1705.05331">1705.05331</a> [math.NT], 2017.

%e A195441(21) = A195441(22) = 30, so 30 is in the sequence. - _Jonathan Sondow_, Dec 11 2018

%t Take[#, 32] &@ Union@ SequenceCases[ Table[ Denominator[ Together[ (BernoulliB[n + 1, x] - BernoulliB[n + 1])]], {n, 0, 2000}], w_ /; And[SameQ @@ w, Length@ w >= 2]][[All, 1]] (* _Michael De Vlieger_, Sep 22 2017, after _Jonathan Sondow_ at A195441 *)

%o (Julia)

%o function A286763_search()

%o A = fmpz[]; a = fmpz(0)

%o for n in 0:10000

%o u = A195441(n)

%o a == u && push!(A, a)

%o a = u

%o end

%o S = sort([a for a in Set(A)])

%o S[1:32] end

%o println(A286763_search())

%Y Cf. A195441, A286516, A286762.

%K nonn

%O 1,2

%A _Peter Luschny_, May 14 2017