login
A286560
Compound filter (summands of A004001 & summands of A005185): a(n) = P(A286541(n), A286559(n)), where P(n,k) is sequence A000027 used as a pairing function, with a(1) = a(2) = 0.
7
0, 0, 1, 2, 5, 41, 71, 71, 198, 313, 484, 922, 1153, 1201, 2105, 1565, 2588, 4046, 5001, 7443, 7443, 8851, 10671, 19589, 16570, 16935, 22254, 25313, 25313, 25313, 42891, 28793, 32768, 52795, 65504, 59178, 73355, 89033, 88632, 107660, 129045, 129045, 153471, 167646, 167646, 182446, 182446, 336130, 197244, 233297, 330472, 307358, 270167, 355325, 378466, 332156
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Pairing Function
FORMULA
a(1) = a(2) = 0, for n > 2, a(n) = (1/2)*(2 + ((A286541(n)+A286559(n))^2) - A286541(n) - 3*A286559(n)).
PROG
(Scheme) (define (A286560 n) (if (<= n 2) 0 (* (/ 1 2) (+ (expt (+ (A286541 n) (A286559 n)) 2) (- (A286541 n)) (- (* 3 (A286559 n))) 2))))
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Antti Karttunen, May 18 2017
STATUS
approved