

A286483


a(n) = (i^n)*Sum_{k=0..n} (k+1)*B_k*s(n+2,k+2)*(n+2)^k.


1



1, 0, 5, 0, 238, 0, 51508, 0, 35028576, 0, 59053389408, 0, 209726098354368, 0, 1397532391623302400, 0, 16043549794523492290560, 0, 297285345537576037788672000, 0, 8447414796960536731803240038400
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

s(n,k) is the unsigned Stirling number of first kind (see A008275), B_k is the Bernoulli number and i^2=1. All evenindexed terms are positive integers, and the oddindexed terms are zero. A generating function would be welcomed.


LINKS

Table of n, a(n) for n=0..20.
R. Gy, An aerated triangular array of integers, arXiv: 1902.09309 [math.CO], 2019.


MATHEMATICA

list = {};
nlim = 20; Do[s=(1)^(n/2) Sum[(1)^(nk)*(k+1)*BernoulliB[k]*StirlingS1[n+2, k+2]*(n+2)^k, {k, 0, n}]; AppendTo[list, s], {n, 0, nlim}]; Print[list]


PROG

(PARI) a(n) = (I^n)*sum(k=0, n, (k+1)*bernfrac(k)*abs(stirling(n+2, k+2, 1))*(n+2)^k); \\ Michel Marcus, May 19 2019


CROSSREFS

Sequence in context: A157302 A275759 A222327 * A264884 A036946 A027641
Adjacent sequences: A286480 A286481 A286482 * A286484 A286485 A286486


KEYWORD

nonn


AUTHOR

René Gy, May 10 2017


STATUS

approved



