login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286369 Compound filter: a(n) = 2*A286364(n) + floor(A072400(n)/4). 5
2, 2, 4, 2, 7, 5, 5, 2, 14, 6, 4, 4, 7, 5, 11, 2, 6, 14, 4, 7, 33, 5, 5, 5, 20, 6, 58, 5, 7, 11, 5, 2, 32, 6, 10, 14, 7, 5, 11, 6, 6, 32, 4, 4, 25, 5, 5, 4, 14, 20, 10, 7, 7, 59, 11, 5, 32, 6, 4, 11, 7, 5, 135, 2, 42, 32, 4, 6, 33, 11, 5, 14, 6, 6, 28, 4, 33, 11, 5, 7, 242, 6, 4, 33, 43, 5, 11, 5, 6, 24, 10, 5, 33, 5, 11, 5, 6, 14, 134, 20, 7, 11, 5, 6, 46, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This sequence contains, in addition to the information contained in A286364 (which packs the values of A286361(n) and A286363(n) to a single value with the pairing function A000027) also the bit-2 of A072400(n) (its third least significant bit), which is here stored as the least significant bit of a(n). In contrast to A286366, the parity of the highest power of 2 dividing n is not stored.

Thus we have (among other such identities) the following two identities related to equivalence class partitioning:

For all odd i, odd j: a(i) = a(j) <=> A286366(i) = A286366(j).

For all odd i, odd j: a(i) = a(j) => A010877(i) = A010877(j). [On odd numbers the information contained in a(n) is sufficient to determine the value of n modulo 8, one of the 1, 3, 5 or 7.]

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = 2*A286364(n) + floor(A072400(n)/4).

PROG

(Scheme) (define (A286369 n) (+ (* 2 (A286364 n)) (floor->exact (/ (A072400 n) 4))))

(Python)

from sympy.ntheory.factor_ import digits

from sympy import factorint

from operator import mul

def P(n):

    f = factorint(n)

    return sorted([f[i] for i in f])

def a046523(n):

    x=1

    while True:

        if P(n) == P(x): return x

        else: x+=1

def A(n, k):

    f = factorint(n)

    return 1 if n == 1 else reduce(mul, [1 if i%4==k else i**f[i] for i in f])

def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2

def a286364(n): return T(a046523(n/A(n, 1)), a046523(n/A(n, 3)))

def a072400(n): return int(str(int(''.join(map(str, digits(n, 4)[1:]))[::-1]))[::-1], 4)%8

def a(n): return 2*a286364(n) + int(a072400(n)/4) # Indranil Ghosh, May 09 2017

CROSSREFS

Cf. A072400, A286364, A286366, A286370, A286371.

Sequence in context: A122977 A275870 A003980 * A132801 A270366 A072478

Adjacent sequences:  A286366 A286367 A286368 * A286370 A286371 A286372

KEYWORD

nonn

AUTHOR

Antti Karttunen, May 09 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 04:04 EDT 2018. Contains 316431 sequences. (Running on oeis4.)