login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) read by rows: T(n, k) = S2(n, k)*k! + S2(n, k-1)*(k-1)! with the Stirling2 triangle S2 = A048993.
1

%I #27 May 13 2017 04:58:48

%S 1,0,1,0,1,3,0,1,7,12,0,1,15,50,60,0,1,31,180,390,360,0,1,63,602,2100,

%T 3360,2520,0,1,127,1932,10206,25200,31920,20160,0,1,255,6050,46620,

%U 166824,317520,332640,181440,0,1,511,18660,204630,1020600,2739240,4233600,3780000,1814400,0,1,1023,57002,874500,5921520,21538440,46070640,59875200,46569600,19958400

%N Triangle T(n, k) read by rows: T(n, k) = S2(n, k)*k! + S2(n, k-1)*(k-1)! with the Stirling2 triangle S2 = A048993.

%C This triangle T(n, k) appears in the e.g.f. of the sum of powers SP(n, m) = Sum_{j=0..m} j^n, n >= 0, m >= 0 with 0^0:=1 as ESP(n, t) = exp(t)*(Sum_{k=0..n} T(n, k)*t^k/k! + t^(n+1)/(n+1)), n >= 0.

%C The sub-triangle T(n, k) for 1 <= k <=n, see A028246(n+1,k) (diagonal not needed).

%C For S2(n, m)*m! see A131689.

%C The columns (starting sometimes with n=k) are A000007, A000012, A000225, A028243(n-1), A028244(n-1), A028245(n-1), A032180(n-1), A228909, A228910, A228911, A228912, A228913. See below for the e.g.f.s and o.g.f.s.

%C The row sums are 1 for n=1 and A000629(n) - n! for n >= 1, See A285868.

%F T(n, k) = A131689(n, k) + A131689(n, k-1), 0 <= k <= n, with A131689(n, -1) = 0.

%F T(0, 0) = 1 and T(n, k) = Stirling2(n+1, k)*(k-1)! for n >= k >= 1. For Stirling2 see A048993. Stirling2(n, k)*(k-1)! = A028246(n, k) for n >= k >= 1.

%F Recurrence: T(0, 0) = 1, T(n, n) = (n+1)!/2, T(n, -1) = 0, T(n, k) = 0 if n < k, and T(n, k) = (k-1)*T(n-1, k-1) + k*T(n-1, k), for n > k >= 0.

%F E.g.f. for column k=0 is 1, and for k >= 1: Sum_{j=1..k}((-1)^(k-j) * binomial(k-1, j-1) * exp(j*x)) - x^(k-1).

%F O.g.f. for column k = 0 is 1, and for k >= 1: ((k-1)!*x^(k-1) / Product_{j=1..k} (1-j*x)) - (k-1)!*x^(k-1).

%e The triangle T(n, k) begins:

%e n\k 0 1 2 3 4 5 6 7 8 9 ...

%e 0: 1

%e 1: 0 1

%e 2: 0 1 3

%e 3: 0 1 7 12

%e 4: 0 1 15 50 60

%e 5: 0 1 31 180 390 360

%e 6: 0 1 63 602 2100 3360 2520

%e 7: 0 1 127 1932 10206 25200 31920 20160

%e 8: 0 1 255 6050 46620 166824 317520 332640 181440

%e 9: 0 1 511 18660 204630 1020600 2739240 4233600 3780000 1814400

%e ...

%t Table[If[k == 0, Boole[n == 0], StirlingS2[n, k] k! + StirlingS2[n, k - 1] (k - 1)!], {n, 0, 10}, {k, 0, n}] (* _Michael De Vlieger_, May 08 2017 *)

%Y Cf. A000629, A028246, A048993, A131689, A285868.

%K nonn,easy,tabl

%O 0,6

%A _Wolfdieter Lang_, May 03 2017