%I #13 May 09 2021 09:51:11
%S 1,0,1,0,1,0,3,2,3,0,1,0,1,0,5,4,3,4,7,0,1,0,3,2,3,0,1,0,1,0,3,2,5,0,
%T 7,2,7,0,5,2,3,0,1,0,1,0,5,4,3,8,7,0,7,8,3,4,5,0,1,0,1,0,3,2,3,0,1,0,
%U 1,0,3,2,3,0,1,0,1,0,3,2,3,0,1,0,1,0,5,4,3,4,15,0,1,0,11,10,5,4,7,6,9,0,11,2,11,0,15,2,7,0,5,2,3,0,1,0,1,0,3
%N a(n) = A285735(n) - A285734(n) = n - 2*A285734(n).
%H Antti Karttunen, <a href="/A285736/b285736.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A285735(n) - A285734(n) = n - 2*A285734(n).
%o (Scheme)
%o (define (A285736 n) (- (A285735 n) (A285734 n)))
%o (define (A285736 n) (- n (* 2 (A285734 n))))
%o (Python)
%o from sympy.ntheory.factor_ import core
%o def issquarefree(n): return core(n) == n
%o def a285734(n):
%o if n==1: return 0
%o j=n//2
%o while True:
%o if issquarefree(j) and issquarefree(n - j): return j
%o else: j-=1
%o def a285736(n): return n - 2*a285734(n)
%o print([a285736(n) for n in range(1, 101)]) # _Indranil Ghosh_, May 02 2017
%Y Cf. A005117 (2*A005117 gives the positions of zeros), A285734, A285735.
%K nonn
%O 1,7
%A _Antti Karttunen_, May 02 2017