Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Apr 26 2017 21:49:12
%S 1,1,1,2,1,1,1,3,1,1,2,2,1,1,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,1,1,1,1,3,
%T 1,1,2,1,1,1,1,1,1,1,1,2,2,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,3,1,1,1,2,3,
%U 1,1,1,1,3,1,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,1,1,1
%N a(n) = number of iterations x -> A064216(x) needed to reach a nonprime number when starting from prime(n), a(1) = a(2) = 1.
%C Length (or size for the closed cycles: [2] and [3]) of the complete "slipping Cunningham chain of the second kind" starting with prime(n). That is, at the end of every step, the next prime q = 2p-1 "slips" by one step towards smaller primes as A064989(q).
%C After n = 1, 2 (primes 2 & 3) differs from A181715 for the first time at n=22, where a(22) = 2, while A181715(22) = 3, prime(22) = 79.
%H Antti Karttunen, <a href="/A285706/b285706.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A285701(A000040(n)).
%e See examples in A285701.
%t Table[If[n <= 2, 1, -1 + Length@ NestWhileList[Apply[Times, FactorInteger[2 # - 1] /. {p_, e_} /; p > 2 :> NextPrime[p, -1]^e] &, Prime@ n, PrimeQ@ # &]], {n, 120}] (* _Michael De Vlieger_, Apr 26 2017 *)
%o (PARI) A285706(n) = A285701(prime(n)); \\ The rest of code in A285701.
%o (Scheme) (define (A285706 n) (A285701 (A000040 n)))
%Y Cf. A000040, A064216, A064989, A181715, A246373, A285701.
%Y Cf. A137288 (gives the positions of terms > 1 after its two initial terms).
%K nonn
%O 1,4
%A _Antti Karttunen_, Apr 26 2017