login
a(1) = 2; a(n + 1) = smallest prime > a(n) such that a(n + 1) - a(n) is the product of 7 primes.
3

%I #14 Dec 29 2022 09:49:39

%S 2,9479,9767,10247,10567,11047,11239,11527,11719,12007,12487,12919,

%T 13367,13687,13879,14071,14503,14951,15271,15559,15991,16183,16631,

%U 16759,17047,17239,17431,17623,17911,18199,18679,19687,20359,20551,20743,21031,21319,21751,21943

%N a(1) = 2; a(n + 1) = smallest prime > a(n) such that a(n + 1) - a(n) is the product of 7 primes.

%C First differences: 9477, 288, 480, 320, 480, 192, 288, 192, 288, 480, 432, 448, 320, 192, 192, 432, 448, 320, 288, 432,...

%H Robert Israel, <a href="/A285692/b285692.txt">Table of n, a(n) for n = 1..10000</a>

%p A:= Vector(100): A[1]:= 2:

%p for n from 2 to 100 do

%p p:= A[n-1];

%p do

%p p:= nextprime(p);

%p until numtheory:-bigomega(p-A[n-1]) = 7;

%p A[n]:= p;

%p od:

%p convert(A,list); # _Robert Israel_, Dec 28 2022

%t NestList[Module[{p = NextPrime@ #}, While[PrimeOmega[p - #] != 7, p = NextPrime@ p]; p] &, 2, 38] (* _Michael De Vlieger_, Apr 25 2017 *)

%Y Cf. A255609, A285688, A285689, A285690, A285691.

%K nonn

%O 1,1

%A _Zak Seidov_, Apr 25 2017