|
|
A285692
|
|
a(1) = 2; a(n + 1) = smallest prime > a(n) such that a(n + 1) - a(n) is the product of 7 primes.
|
|
3
|
|
|
2, 9479, 9767, 10247, 10567, 11047, 11239, 11527, 11719, 12007, 12487, 12919, 13367, 13687, 13879, 14071, 14503, 14951, 15271, 15559, 15991, 16183, 16631, 16759, 17047, 17239, 17431, 17623, 17911, 18199, 18679, 19687, 20359, 20551, 20743, 21031, 21319, 21751, 21943
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
First differences: 9477, 288, 480, 320, 480, 192, 288, 192, 288, 480, 432, 448, 320, 192, 192, 432, 448, 320, 288, 432,...
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
MAPLE
|
A:= Vector(100): A[1]:= 2:
for n from 2 to 100 do
p:= A[n-1];
do
p:= nextprime(p);
until numtheory:-bigomega(p-A[n-1]) = 7;
A[n]:= p;
od:
convert(A, list); # Robert Israel, Dec 28 2022
|
|
MATHEMATICA
|
NestList[Module[{p = NextPrime@ #}, While[PrimeOmega[p - #] != 7, p = NextPrime@ p]; p] &, 2, 38] (* Michael De Vlieger, Apr 25 2017 *)
|
|
CROSSREFS
|
Cf. A255609, A285688, A285689, A285690, A285691.
Sequence in context: A272247 A167748 A203755 * A340546 A343700 A086563
Adjacent sequences: A285689 A285690 A285691 * A285693 A285694 A285695
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Zak Seidov, Apr 25 2017
|
|
STATUS
|
approved
|
|
|
|