login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285470
Numbers k where "2" appears as the second digit of the decimal representation.
1
12, 22, 32, 42, 52, 62, 72, 82, 92, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 620, 621, 622, 623, 624, 625, 626, 627
OFFSET
1,1
COMMENTS
To find a(n), concatenate the first digit of n with 2 and then the other digits (if any) from n. See example. - David A. Corneth, Jun 12 2017
LINKS
FORMULA
From Robert Israel, Jun 12 2017: (Start)
a(10*n+j) = 10*a(n)+j for 0<=j<=9 and n >= 1.
G.f. g(x) satisfies g(x) = 10*(1-x^10)*g(x^10)/(1-x) + (x + 2*x + ... + 9*x^9)*x^10/(1-x^10) + 12*x + 22*x^2 + ... + 92*x^9. (End)
EXAMPLE
a(21) = 221, a(36) = 326.
As the first digit of 983 is 9, and the others are 83, a(983) = 9283. - David A. Corneth, Jun 12 2017
MAPLE
seq(seq(seq(a*10^d + 2*10^(d-1)+c, c=0..10^(d-1)-1), a=1..9), d=1..2); # Robert Israel, Jun 12 2017
MATHEMATICA
Table[FromDigits@ Apply[Join, {{First@ #}, {2}, Rest@ #}] &@ IntegerDigits@ n, {n, 67}] (* Michael De Vlieger, Jun 12 2017 *)
PROG
(PARI) isok(n) = (n>9) && digits(n)[2] == 2; \\ Michel Marcus, Jun 12 2017
(PARI) a(n) = my(d = digits(n)); fromdigits(concat([d[1], [2], vector(#d-1, i, d[i+1])])) \\ David A. Corneth, Jun 12 2017
(PARI) nxt(n) = {if(isok(n+1), n+1, d = digits(n); t = 9*10^(#d-2); if(d[1]==9, t*=3); n+=t++) \\ David A. Corneth, Jun 12 2017
(Python)
def a(n): s = str(n); return int(s[0] + "2" + s[1:])
print([a(n) for n in range(1, 68)]) # Michael S. Branicky, Dec 22 2021
CROSSREFS
Cf. A011532 (containing 2), A052404 (without 2), A217394 (starting with 2).
Sequence in context: A286094 A348187 A098955 * A124885 A115745 A375084
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved