login
A285301
Fixed point of the morphism 0 -> 10, 1 -> 1000.
3
1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0
OFFSET
1
COMMENTS
Prefixing 0 gives A284751.
FORMULA
Conjecture: a(n) = A284751(n+1). - R. J. Mathar, May 08 2017
From Michel Dekking, Sep 11 2019: (Start)
Proof of Mathar's conjecture.
Let sigma be the morphism 0 -> 10, 1 -> 1000.
Let tau be the morphism 0 -> 01, 1 -> 0001.
Then A284751 is the fixed point of tau. So it suffices to prove that
0 sigma^n(1) = tau^n(0) 0 for all n>0.
This formula follows by induction, using that tau and sigma are conjugate morphisms: 1 tau(w) = sigma(w) 1 for all words w.
(Plug in w = tau^n(0) in tau^{n+1}(0)).
(End)
EXAMPLE
0 -> 10-> 100010 -> 1000101010100010 ->
MATHEMATICA
s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {1, 0, 0, 0}}] &, {0}, 10]; (* A285301 *)
Flatten[Position[s, 0]]; (* A285302 *)
Flatten[Position[s, 1]]; (* A086398 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 25 2017
STATUS
approved