|
|
A285139
|
|
0-limiting word of the morphism 0->10, 1-> 0010.
|
|
7
|
|
|
0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1
|
|
COMMENTS
|
The morphism 0->10, 1->0010 has two limiting words. If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 001010 -> 1010001010001010 -> 00101000101010100010100010101010001010001010; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 001010 -> 1010001010001010, as in A285142.
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 0, 1, 0}}] &, {0}, 12]; (* A285139 *)
Flatten[Position[s, 0]]; (* A285140 *)
Flatten[Position[s, 1]]; (* A285141 *)
|
|
CROSSREFS
|
Cf. A285140, A285141, A285142.
Sequence in context: A288257 A285666 A120325 * A289011 A289071 A287931
Adjacent sequences: A285136 A285137 A285138 * A285140 A285141 A285142
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Clark Kimberling, Apr 20 2017
|
|
STATUS
|
approved
|
|
|
|