login
A285087
Numbers n such that the number of partitions of n^2-1 is prime.
8
2, 13, 21, 46909
OFFSET
1,1
COMMENTS
Because asymptotically A000041(n^2-1) ~ exp(Pi*sqrt(2/3*(n^2-1))) / (4*sqrt(3)*(n^2-1)), the sum of the prime probabilities ~1/log(A000041(n^2-1)) is diverging and there are no obvious restrictions on primality; therefore, this sequence may be conjectured to be infinite.
a(5) > 50000.
LINKS
Chris K. Caldwell, Top twenty prime partition numbers, The Prime Pages.
Eric Weisstein's World of Mathematics, Partition Function P
Eric Weisstein's World of Mathematics, Integer Sequence Primes
FORMULA
{n: A000041(n^2-1) in A000040}.
EXAMPLE
13 is in the sequence because A000041(13^2-1) = 228204732751 is a prime.
PROG
(PARI) for(n=1, 2000, if(ispseudoprime(numbpart(n^2-1)), print1(n, ", ")))
(Python)
from itertools import count, islice
from sympy import isprime, npartitions
def A285087_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n: isprime(npartitions(n**2-1)), count(max(startvalue, 1)))
A285087_list = list(islice(A285087_gen(), 3)) # Chai Wah Wu, Nov 20 2023
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Serge Batalov, Apr 09 2017
STATUS
approved