login
A285055
Sum of the cycle lengths of the elements 0,1,...n-1, in Zn under multiplication.
1
1, 2, 4, 5, 12, 8, 22, 11, 24, 24, 64, 18, 78, 44, 38, 31, 172, 48, 184, 50, 74, 128, 334, 38, 236, 156, 192, 96, 474, 76, 442, 103, 214, 344, 194, 106, 672, 368, 242, 102, 904, 148, 904, 278, 218, 668, 1522, 102, 910, 472, 518, 320, 1728, 384, 558, 200, 614, 948
OFFSET
1,2
EXAMPLE
For n=3, 0->0 (cycle length 1), 1->1 (cycle length 1) and 2->1->2 (cycle length 2); 1+1+2 = 4.
The triangle of the cycle lengths is:
1 ;
1, 1 ;
1, 1, 2 ;
1, 1, 1, 2 ;
1, 1, 4, 4, 2 ;
1, 1, 2, 1, 1, 2 ;
1, 1, 3, 6, 3, 6, 2 ;
1, 1, 1, 2, 1, 2, 1, 2 ;
1, 1, 6, 1, 3, 6, 1, 3, 2 ;
1, 1, 4, 4, 2, 1, 1, 4, 4, 2 ;
MAPLE
A285055Tr := proc(n, m)
local a, nmap, cyc ;
nmap := n ;
cyc := [n] ;
for a from 1 do
nmap := modp(nmap*n, m) ;
if member(nmap, cyc, 'i') then
return nops(cyc)-i+1;
else
cyc := [op(cyc), nmap] ;
end if;
end do:
end proc:
A285055 := proc(m)
add(A285055Tr(n, m), n=0..m-1) ;
end proc:
seq(A285055(m), m=1..30) ; # R. J. Mathar, May 06 2017
CROSSREFS
See A060014 for permutations on n elements.
Sequence in context: A317828 A293274 A101961 * A344712 A351753 A268530
KEYWORD
nonn
AUTHOR
Chad Brewbaker, Apr 08 2017
STATUS
approved