login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284889
Numbers n such that A279513(n) is a primorial number (A002110).
1
1, 2, 6, 8, 9, 30, 40, 45, 75, 96, 210, 250, 280, 315, 486, 525, 672, 735, 1750, 1920, 2310, 3080, 3402, 3430, 3465, 5775, 6125, 7392, 8085, 8575, 10976, 11907, 12705, 15625, 16000, 19250, 21120, 21870, 30030, 31104, 32768, 37422, 37730, 40040, 45045, 54675
OFFSET
1,2
COMMENTS
Also numbers with the k first prime numbers in their prime tower factorization, without duplicate, for some k (see A182318 for the definition of the prime tower factorization of a number).
This sequence contains the primorial numbers (A002110); 8 = 2^3 is the first term in this sequence that is not a primorial number.
This sequence contains A260548.
All terms belong to A284763.
If a(n) <= p# for some prime p, then a(n) is p-smooth (p# denotes the product of the primes <= p, see A002110).
There are A000272(k+1) terms with k prime numbers in their prime tower factorization:
- for k=0: 1,
- for k=1: 2,
- for k=2: 2*3, 2^3, 3^2,
- for k=3: 2*3*5, 2^3*5, 2^5*3, 3^2*5, 3^5*2, 5^2*3, 5^3*2, 2^(3*5), 3^(2*5), 5^(2*3), 2^3^5, 2^5^3, 3^2^5, 3^5^2, 5^2^3, 5^3^2.
EXAMPLE
1626625 = 5^3*7*11*13^2 appears in this sequence.
PROG
(PARI) isprimorial(n) = if (n==1, 1, my (f=factor(n)); (#f~ == primepi(vecmax(f[, 1]))) && (vecmax(f[, 2]) == 1));
a279513(n) = my (f=factor(n)); prod(i=1, #f~, f[i, 1]*a279513(f[i, 2]));
isok(n) = isprimorial(a279513(n)); \\ Michel Marcus, Apr 08 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Apr 05 2017
STATUS
approved