The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284844 Number of permutations on [n+3] with no circular 3-successions. 1
 16, 70, 384, 2534, 19424, 169254, 1650160, 17784646, 209855856, 2689946246, 37210700576, 552433526310, 8759992172224, 147751562532454, 2641055171379984, 49869279287055494, 991843699479853520, 20724299315437752006, 453861919477920665536, 10395594941305558134886 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Define a circular k-succession in a permutation p on [n] as either a pair p(i),p(i+1) if p(i+1)=p(i)+k, or as the pair p(n),p(1) if p(1)=p(n)+k. If we let d*(n,k) be the number of permutations on [n] that avoid substrings (j,j+k), 1 <= j <= n, k=3, i.e., permutations with no circular 3-succession, then a(n) counts d*(n+3,3). For example, for n=1, the permutations in S4 that contain the substring {14} in circular 3-succession are 1423, 1432, 2143, 2314, 3142, 3214, 4231, 4321, therefore d*(4,3) consists of the complementary permutations in S4, and a(1)=16. LINKS Enrique Navarrete, Generalized K-Shift Forbidden Substrings in Permutations, arXiv:1610.06217 [math.CO], 2016. FORMULA a(n) = (n+3)* Sum_{j=0..n} (-1)^j*binomial(n,j)*(n-j+2)!. Conjecture: a(n) = (n+3)*A055790(n+1). - R. J. Mathar, Jul 15 2017 EXAMPLE a(2)=70 since there are 70 permutations in S5 with no circular 3-succession, i.e., permutations that avoid substrings {14,25} such as 25134 or 51342. MAPLE A284844 := proc(n)     local j;     add( (-1)^j*binomial(n, j)*(n-j+2)!, j=0..n) ;     %*(n+3) ; end proc: seq(A284844(n), n=1..20) ; # R. J. Mathar, Jul 15 2017 MATHEMATICA a[n_] := ((n+3)*((n*(n+5)+5)*Subfactorial[n+2]+(-1)^(n+1)*(n+1)))/((n+2)*(n+1)); Array[a, 20] (* Jean-François Alcover, Dec 09 2017 *) CROSSREFS Sequence in context: A063493 A220212 A027997 * A258724 A264888 A272964 Adjacent sequences:  A284841 A284842 A284843 * A284845 A284846 A284847 KEYWORD nonn AUTHOR Enrique Navarrete, Apr 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 05:13 EST 2021. Contains 340360 sequences. (Running on oeis4.)