Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 23 2018 15:53:06
%S 23,86,339,1332,5298,21066,83987,334966,1336988,5338206,21321234,
%T 85176636,340338398,1360073016,5435820051,21727481616,86853790498,
%U 347214198246,1388133456348,5549915835836,22190143855898,88725807876186,354775752246802,1418633882621748,5672803378074548
%N Even bisection of A283848.
%H Robert Israel, <a href="/A284711/b284711.txt">Table of n, a(n) for n = 2..1659</a>
%H Shinsaku Fujita, <a href="https://doi.org/10.1246/bcsj.20160369">alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method</a>, Bull. Chem. Soc. Jpn. 2017, 90, 343-366; doi:10.1246/bcsj.20160369. See Table 8.
%F a(n) = A283848(2*n)=(4*n)^(-1)*Sum_{d|2*n, d even} phi(d)*4^(2*n/d) + 5*2^(2*n-2). - _Robert Israel_, Aug 23 2018 after Fujita (2017), Eq. (101)
%p f:= proc(n) uses numtheory;
%p (4*n)^(-1)*add(phi(d)*4^(2*n/d),d=select(type,divisors(2*n),even))+5*2^(2*n-2)
%p end proc:
%p map(f, [$2..40]);
%o (PARI) A(m,n) = if (m%2, 2^((m-1)/2)*n^((m+1)/2), sumdiv(m, d, ((d%2)==0)*(eulerphi(d)*2^(m/d)*n^(m/d)))/(2*m) + 2^(m/2-2)*n^(m/2)*(2*n+1));
%o lista(nn) = for(n=2, nn, print1(T(2*n, 2), ", ")) \\ _Michel Marcus_, Apr 02 2017
%Y The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.
%Y The even bisection of A283848 gives A000079.
%K nonn
%O 2,1
%A _N. J. A. Sloane_, Apr 01 2017
%E More terms from _Michel Marcus_, Apr 02 2017
%E Edited by _Robert Israel_, Aug 23 2018