login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284663
Number of dominating sets in the Moebius ladder M_n.
8
3, 15, 51, 179, 663, 2439, 8935, 32771, 120219, 440975, 1617531, 5933267, 21763823, 79831879, 292831311, 1074134531, 3940032883, 14452434639, 53012975555, 194456895859, 713287340551, 2616409296967, 9597250953527, 35203676264195, 129130605057163
OFFSET
1,1
COMMENTS
Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, May 10 2017
LINKS
Eric Weisstein's World of Mathematics, Dominating Set
Eric Weisstein's World of Mathematics, Moebius Ladder
FORMULA
From Andrew Howroyd, May 10 2017 (Start)
a(n) = 3*a(n-1)+a(n-2)+5*a(n-3)+a(n-4)+a(n-5)-a(n-6)-a(n-7) for n>7.
G.f.: x*(1-x)*(1+x)*(3*x^4+2*x^3+6*x^2+6*x+3)/((x^2+1)*(x^5+x^4-2*x^3 -2*x^2-3*x+1)). (End)
MATHEMATICA
LinearRecurrence[{3, 1, 5, 1, 1, -1, -1}, {3, 15, 51, 179, 663, 2439,
8935}, 20] (* Eric W. Weisstein, May 17 2017 *)
Rest[CoefficientList[Series[x*(1 - x)*(1 + x)*(3*x^4 + 2*x^3 + 6*x^2 + 6*x + 3)/((x^2 + 1)*(x^5 + x^4 - 2*x^3 - 2*x^2 - 3*x + 1)), {x, 0, 50}], x]] (* G. C. Greubel, May 17 2017 *)
Table[RootSum[1 + # - 2 #^2 - 2 #^3 - 3 #^4 + #^5 &, #^n &] - 2 Cos[n Pi/2], {n, 20}] (* Eric W. Weisstein, Jun 14 2017 *)
PROG
(PARI)
Vec((1-x)*(1+x)*(3*x^4+2*x^3+6*x^2+6*x+3)/((x^2+1)*(x^5+x^4-2*x^3-2*x^2-3*x+1))+O(x^50)) \\ Andrew Howroyd, May 10 2017
CROSSREFS
Cf. A182143, A284702, A218348 (ladder).
Sequence in context: A248122 A118126 A282464 * A231747 A192742 A166035
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Mar 31 2017
EXTENSIONS
a(1)-(2) and a(16)-a(25) from Andrew Howroyd, May 10 2017
STATUS
approved