login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284379
Numbers n with digits 3 and 5 only.
6
3, 5, 33, 35, 53, 55, 333, 335, 353, 355, 533, 535, 553, 555, 3333, 3335, 3353, 3355, 3533, 3535, 3553, 3555, 5333, 5335, 5353, 5355, 5533, 5535, 5553, 5555, 33333, 33335, 33353, 33355, 33533, 33535, 33553, 33555, 35333, 35335, 35353, 35355, 35533, 35535
OFFSET
1,1
COMMENTS
Prime terms are in A020462.
LINKS
FORMULA
From Robert Israel, Apr 13 2020: (Start)
a(n) = 2*A007931(n)+A002275(n).
a(2n+1) = 10*a(n)+3.
a(2n+2) = 10*a(n)+5.
G.f. g(x) satisfies g(x) = 10*(x^2+x)*g(x^2) + (3*x+5*x^2)/(1-x^2). (End)
MAPLE
A:= 3, 5: B:= [3, 5];
for i from 1 to 5 do
B:= map(t -> (10*t+3, 10*t+5), B);
A:= A, op(B);
od:
A; # Robert Israel, Apr 13 2020
MATHEMATICA
Select[Range[35600], Times @@ Boole@ Map[MemberQ[{3, 5}, #] &, IntegerDigits@ #] > 0 &] (* or *)
Table[FromDigits /@ Union@ Apply[Join, Map[Permutations@ # &, Tuples[{3, 5}, n]]], {n, 5}] // Flatten (* Michael De Vlieger, Mar 27 2017 *)
PROG
(Magma) [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {3, 5}]
CROSSREFS
Numbers n with digits 5 and k only for k = 0 - 4 and 6 - 9: A169964 (k = 0), A276037 (k = 1), A072961 (k = 2), this sequence (k = 3), A256290 (k = 4), A256291 (k = 6), A284380 (k = 7), A284381 (k = 8), A284382 (k = 9).
Sequence in context: A295364 A199774 A235267 * A372718 A103010 A225866
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Mar 26 2017
STATUS
approved