login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284262
a(n) = where A284259 for the first time obtains value n (positions of its records).
3
1, 2, 6, 105, 5005, 85085, 1616615, 37182145, 6685349671, 247357937827, 10141675450907, 436092044389001, 20496326086283047, 9156001667401012567, 558516101711461766587, 37420578814667938361329, 2656861095841423623654359, 193950859996423924526768207, 15322117939717490037614688353, 1271735788996551673122019133299
OFFSET
0,2
LINKS
FORMULA
For n > 1, a(n) = Product_{i = A284263(n)+1 .. A284263(n)+n} prime(i); a(0) = 1, a(1) = 2.
a(n) = A242378(A284263(n), A002110(n)) [shift the prime factorization of the n-th primorial A284263(n) steps towards larger primes].
Other identities. For all n >= 0:
A001221(a(n)) = A001222(a(n)) = n.
A284259(a(n)) = n.
MATHEMATICA
A[n_]:= If[n<1, 0, Block[{k=1}, While[Prime[n + k - 1] > Prime[k]^2, k++]; k - 1]]; a[n_]:=If[n<2, n + 1, Product[Prime[i], {i, A[n] + 1, A[n] + n}]]; Table[a[n], {n, 0, 51}] (* Indranil Ghosh, Mar 24 2017 *)
PROG
(Scheme) (define (A284262 n) (A242378bi (A284263 n) (A002110 n))) ;; Where A242378bi(k, n) applies prime shift A003961(n) k times. See A242378.
(PARI) A(n) = { my(k=1); if(0==n, 0, while(prime(n+k-1) > (prime(k)^2), k = k+1); (k-1)); };
a(n) = prod(i=A(n) + 1, A(n) + n, prime(i));
for(n=0, 51, print1(a(n), ", ")) \\ Indranil Ghosh, after Antti Karttunen, Mar 24 2017
(Python)
from sympy import prime
from operator import mul
from functools import reduce
def A(n):
if n<1: return 0
k=1
while prime(n + k - 1)>prime(k)**2:k+=1
return k - 1
def a(n): return n + 1 if n<2 else reduce(mul, [prime(i) for i in range(A(n) + 1, A(n) + n + 1)])
print([a(n) for n in range(21)]) # Indranil Ghosh, Mar 24 2017
CROSSREFS
Cf. A001221, A001222, A002110, A003961, A242378, A284259 (a left inverse), A284263.
Cf. also A109819.
Sequence in context: A278888 A099790 A294906 * A374006 A287935 A357090
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 24 2017
STATUS
approved