%I #8 Apr 06 2017 21:26:49
%S 0,0,0,0,0,0,0,0,0,3628800,36288000,402796800,4906137600,64988179200,
%T 929459059200,14266826784000,233845982899200,4075249496774400,
%U 75225258805132800,1465957162768492800,30071395843421184000,647624841502298284800
%N Eleventh column of Euler's difference table in A068106.
%C For n >= 11, this is the number of permutations of [n] that avoid substrings j(j+10), 1 <= j <= n-10.
%H Enrique Navarrete, <a href="http://arxiv.org/abs/1610.06217">Generalized K-Shift Forbidden Substrings in Permutations</a>, arXiv:1610.06217 [math.CO], 2016.
%F For n>=11: a(n) = Sum_{j=0..n-10} (-1)^j*binomial(n-10,j)*(n-j)!.
%F Note a(n)/n! ~ 1/e.
%e a(14)=64988179200 since this is the number of permutations in S14 that avoid substrings {1(11),2(12),3(13),4(14)}.
%t Table[Sum[(-1)^j*Binomial[n - 10, j]*(n - j)!, {j, 0, n - 10}], {n, 22}] (* _Michael De Vlieger_, Apr 03 2017 *)
%Y Also 3628800 times A176736.
%Y Cf. A068106.
%K nonn
%O 1,10
%A _Enrique Navarrete_, Mar 22 2017