login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of poly-Bernoulli numbers B_n^(k) with k = 9.
2

%I #18 Mar 19 2017 01:16:50

%S 1,512,10077696,859963392,2519424000000000,335923200000000,

%T 20333569192473600000000,24787589110824960000000,

%U 1016446075975766016000000000,6453625879211212800000000,79890889262435601646115635200000000,184452269581380898461450240000000

%N Denominators of poly-Bernoulli numbers B_n^(k) with k = 9.

%H Seiichi Manyama, <a href="/A283935/b283935.txt">Table of n, a(n) for n = 0..309</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Poly-Bernoulli_number">Poly-Bernoulli number</a>

%e B_0^(9) = 1, B_1^(9) = 1/512, B_2^(9) = -18659/10077696, B_3^(9) = 1437155/859963392, ...

%t B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-9), {m, 0, n}]; Table[Denominator[B[n]], {n, 0, 15}] (* _Indranil Ghosh_, Mar 18 2017 *)

%o (PARI) B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-9));

%o for(n=0, 15, print1(denominator(B(n)), ", ")) \\ _Indranil Ghosh_, Mar 18 2017

%Y Cf. A283934.

%K nonn,frac

%O 0,2

%A _Seiichi Manyama_, Mar 18 2017