login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283935
Denominators of poly-Bernoulli numbers B_n^(k) with k = 9.
2
1, 512, 10077696, 859963392, 2519424000000000, 335923200000000, 20333569192473600000000, 24787589110824960000000, 1016446075975766016000000000, 6453625879211212800000000, 79890889262435601646115635200000000, 184452269581380898461450240000000
OFFSET
0,2
LINKS
EXAMPLE
B_0^(9) = 1, B_1^(9) = 1/512, B_2^(9) = -18659/10077696, B_3^(9) = 1437155/859963392, ...
MATHEMATICA
B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-9), {m, 0, n}]; Table[Denominator[B[n]], {n, 0, 15}] (* Indranil Ghosh, Mar 18 2017 *)
PROG
(PARI) B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-9));
for(n=0, 15, print1(denominator(B(n)), ", ")) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Cf. A283934.
Sequence in context: A016797 A013789 A330484 * A016833 A103352 A013848
KEYWORD
nonn,frac
AUTHOR
Seiichi Manyama, Mar 18 2017
STATUS
approved