login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283562
Primes of the form (p^2 - q^2) / 24 with primes p > q > 3.
3
2, 3, 5, 7, 11, 13, 17, 23, 37, 43, 47, 53, 67, 73, 97, 103, 107, 113, 127, 137, 157, 163, 167, 173, 193, 223, 233, 257, 263, 277, 283, 293, 313, 337, 347, 353, 373, 397, 433, 443, 467, 487, 523, 547, 563, 577, 593, 607, 613, 617, 643, 647, 653, 733, 743, 757, 773, 787, 797, 887, 907, 937, 947, 953, 977
OFFSET
1,1
COMMENTS
Note that p - q must be <= 12. Also note that there can be corresponding prime pairs (q, p) more than one way, i.e., (7, 13), (13, 17), (29, 31): (13^2 - 7^2)/24 = (17^2 - 13^2)/24 = (31^2 - 29^2)/24 = 5.
There are no terms of A045468 > 11.
Union of {2}, A006489, A060212, A092110, and A125272. - Robert Israel, Mar 13 2017
LINKS
FORMULA
For n > 5, a(n) == {3,7} mod 10.
EXAMPLE
3 is a term since (11^2 - 7^2)/24 = 3 and 3, 7, 11 are prime numbers.
MAPLE
select(r -> isprime(r) and ((isprime(3*r+2) and isprime(3*r-2))
or (isprime(6*r+1) and isprime(6*r-1))
or (isprime(2*r+3) and isprime(2*r-3))
or (isprime(r+6) and isprime(r-6))), [2, seq(i, i=3..1000, 2)]); # Robert Israel, Mar 13 2017
MATHEMATICA
ok[n_] := PrimeQ[n] && Block[{p, q, s = Reduce[p^2-q^2 == 24 n && p>3 && q>3, {p, q}, Integers]}, If[s === {}, False, Or @@ And @@@ PrimeQ[{p, q} /. List@ ToRules@s]]]; Select[Range@1000, ok] (* Giovanni Resta, Mar 11 2017 *)
PROG
(PARI) isA124865(n) = if(n%24, isprimepower(n+4)==2 || isprimepower(n+9)==2, fordiv(n/4, d, if(isprime(n/d/4+d) && isprime(n/d/4-d), return(1))); 0)
lista(nn) = forprime(p=2, nn, if(isA124865(24*p), print1(p", ")))
KEYWORD
nonn
AUTHOR
Altug Alkan and Thomas Ordowski, Mar 11 2017
STATUS
approved