|
|
A283462
|
|
Prime summand recurrence: a(n+1) = the sum of the primes <= a(n) with a(0) = 3.
|
|
0
|
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Obviously beginning with any number less than 3 goes nowhere.
Employed Kim Walisch's primesum.
|
|
LINKS
|
Table of n, a(n) for n=0..9.
|
|
MATHEMATICA
|
NestList[Sum[Prime@ i, {i, PrimePi@ #}] &, 3, 8] (* Michael De Vlieger, Mar 09 2017 *)
|
|
PROG
|
(PARI) a(n) = if(n==0, 3, sum(k=1, primepi(a(n-1)), prime(k))); \\ Indranil Ghosh, Mar 13 2017
|
|
CROSSREFS
|
Subsequence of A007504.
Sequence in context: A026621 A096395 A026687 * A270414 A227208 A009854
Adjacent sequences: A283459 A283460 A283461 * A283463 A283464 A283465
|
|
KEYWORD
|
hard,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Mar 08 2017
|
|
STATUS
|
approved
|
|
|
|