login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283432
Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 3 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
8
1, 1, 3, 1, 6, 27, 1, 18, 216, 5346, 1, 45, 1701, 134865, 10766601, 1, 135, 15066, 3608550, 871858485, 211829725395, 1, 378, 133407, 96997824, 70607782701, 51472887053238, 37523659114815147, 1, 1134, 1198476, 2616461190, 5719211266905, 12507889858389450, 27354747358715650524, 59824832319304600777362
OFFSET
0,3
COMMENTS
Computed using Burnside's orbit-counting lemma.
LINKS
M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque).
FORMULA
For even n and m: T(n,m) = (3^(m*n) + 3*3^(m*n/2))/4;
for even n and odd m: T(n,m) = (3^(m*n) + 3^((m*n+n)/2) + 2*3^(m*n/2))/4;
for odd n and even m: T(n,m) = (3^(m*n) + 3^((m*n+m)/2) + 2*3^(m*n/2))/4;
for odd n and m: T(n,m) = (3^(m*n) + 3^((m*n+n)/2) + 3^((m*n+m)/2) + 3^((m*n+1)/2))/4.
EXAMPLE
Triangle begins:
===========================================================
n\ m | 0 1 2 3 4 5
-----|-----------------------------------------------------
0 | 1
1 | 1 3
2 | 1 6 27
3 | 1 18 216 5346
4 | 1 45 1701 134865 10766601
5 | 1 135 15066 3608550 871858485 211829725395
...
MATHEMATICA
Table[Which[AllTrue[{n, m}, EvenQ], (3^(m n)+3 3^((m n)/2))/4, EvenQ[ n]&&OddQ[m], (3^(m n)+3^((m n+n)/2)+2 3^((m n)/2))/4, OddQ[n]&&EvenQ[ m], (3^(m n)+3^((m n+m)/2)+2 3^((m n)/2))/4, True, (3^(m n)+3^((m n+n)/2)+3^((m n+m)/2)+3^((m n+1)/2))/4], {n, 0, 10}, {m, 0, n}]//Flatten (* Harvey P. Dale, Mar 29 2023 *)
CROSSREFS
Cf. A225910.
Sequence in context: A175291 A156363 A221929 * A157866 A221852 A363196
KEYWORD
nonn,tabl
AUTHOR
María Merino, Imanol Unanue, Yosu Yurramendi, May 15 2017
STATUS
approved