login
A283183
Number of partitions of n into a prime and a square of an arbitrary integer.
1
0, 1, 3, 2, 1, 4, 3, 2, 2, 0, 5, 4, 1, 4, 2, 2, 3, 4, 3, 4, 4, 2, 5, 2, 0, 2, 6, 4, 3, 4, 1, 6, 4, 0, 4, 2, 1, 8, 4, 2, 5, 4, 3, 4, 4, 2, 7, 4, 2, 2, 4, 4, 5, 6, 2, 6, 4, 0, 5, 4, 1, 8, 4, 0, 4, 6, 5, 8, 4, 2, 5, 6, 3, 2, 6, 2, 8, 4, 3, 6, 2, 2, 11, 6, 0, 6, 6
OFFSET
1,3
COMMENTS
a(n) is also the number of solutions to the equation n = p + m^2, where p is prime and m is an arbitrary integer. In comparison, the sequence A002471 counts representations with m being nonnegative.
a(n) is odd if and only if n is prime.
LINKS
H. Li, The exceptional set for the sum of a prime and a square, Acta Math. Hung., 99:123 (2003), 123-141.
R. J. Miech, On the equation n=p+x^2, Trans. of the AMS, 130:3 (1968), 494-512.
A. Nayebi, Upper bounds on the solutions to n=p+m^2, Bull of the Iran. Math. Soc., 37:4 (2011), 95-108.
W. Tianze, On the exceptional set for the equation n=p+k^2, Acta Math. Sinica, 11:2 (1995), 156-167.
EXAMPLE
a(11) = 5 because 11 = 11 + 0^2 = 7 + (-2)^2 = 7 + 2^2 = 2 + (-3)^2 = 2 + 3^2.
MATHEMATICA
a[n_] := Boole@ PrimeQ[n] + 2 Length@ Select[n - Range[Sqrt@ n]^2, PrimeQ]; Array[a, 87] (* Giovanni Resta, Apr 09 2017 *)
PROG
(PARI) local(i, j, k, total); for (i=1, 1000, j=1; k=1; total=isprime(i); while (j <= i, total += 2*isprime(i-j); j += (2*k+1); k++); print1(total, ", ")) \\ Anton Mosunov, Apr 09 2017
CROSSREFS
Sequence in context: A190704 A346611 A190698 * A327467 A347832 A077427
KEYWORD
nonn,easy
AUTHOR
Anton Mosunov, Mar 02 2017
STATUS
approved