login
A282957
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 533", based on the 5-celled von Neumann neighborhood.
4
1, 1, 1, 9, 9, 9, 105, 137, 105, 777, 1513, 1161, 105, 16137, 24041, 21641, 5737, 233737, 318953, 414857, 218729, 3739913, 5103081, 6624393, 3528297, 59838729, 81649129, 105976969, 56481385, 957419785, 1306385897, 1695618185, 903730793, 15318716681
OFFSET
0,4
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Chai Wah Wu, May 05 2024: (Start)
a(n) = 17*a(n-4) - 16*a(n-8) for n > 24.
G.f.: (-98304*x^24 - 81920*x^23 + 65536*x^22 + 24576*x^21 + 122880*x^20 + 65536*x^19 - 65536*x^18 - 28160*x^17 + 5632*x^16 + 4096*x^15 + 3072*x^13 - 1536*x^12 - 1024*x^11 - 256*x^10 + 640*x^9 - 32*x^8 - 16*x^7 + 88*x^6 - 8*x^5 - 8*x^4 + 9*x^3 + x^2 + x + 1)/(16*x^8 - 17*x^4 + 1). (End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 533; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i , 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Robert Price, Feb 25 2017
STATUS
approved