login
A282956
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 533", based on the 5-celled von Neumann neighborhood.
4
1, 2, 4, 9, 18, 36, 75, 145, 300, 579, 1213, 2322, 4800, 9279, 19421, 37162, 77008, 148007, 310745, 594598, 1232216, 2368039, 4971993, 9513126, 19715928, 37888551, 79551961, 152209574, 315455320, 606216743, 1272831449, 2435352742, 5047285592, 9699467815
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Chai Wah Wu, May 05 2024: (Start)
a(n) = 17*a(n-4) - 16*a(n-8) for n > 24.
G.f.: (384*x^24 - 448*x^23 + 64*x^22 + 384*x^21 - 120*x^20 - 4*x^19 - 4*x^18 - 472*x^17 + 208*x^16 + 8*x^15 + 12*x^13 - 12*x^12 + x^11 + 2*x^10 - x^9 + 10*x^8 - 8*x^7 + 7*x^6 + 2*x^5 + x^4 + 9*x^3 + 4*x^2 + 2*x + 1)/(16*x^8 - 17*x^4 + 1). (End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 533; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Feb 25 2017
STATUS
approved