login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282948
Numbers n such that (u^4 + v^4)/2 = x^4 + y^4 = n has a solution in positive integers u,v,x,y.
1
162401, 2598416, 13154481, 41574656, 101500625, 210471696, 389924801, 665194496, 1065512961, 1624010000, 2377713041, 3367547136, 4638334961, 6238796816, 8221550625, 10643111936, 13563893921, 17048207376, 21164260721, 25984160000, 31583908881, 38043408656
OFFSET
1,1
COMMENTS
All terms are composite.
If n is in this sequence, then n*k^4 with k > 0 is in this sequence.
Numbers n such that n and 2*n are both in A003336. - Michel Marcus, Feb 25 2017
The first term which is not a multiple of a(1) is a(84) = 8051889328801. - Giovanni Resta, Feb 25 2017
Based on Giovanni Resta's b-file, the squarefree terms are 162401, 8051889328801, 9305528350081, 16778006844241, .... - Altug Alkan, Feb 26 2017
Izadi & Nabardi construct a collection of elliptic curves of rank >= 5 using (essentially) terms of this sequence. - Charles R Greathouse IV, Jul 13 2024
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..513 (terms < 10^16)
Farzali Izadi and Kamran Nabardi, A Family of Elliptic Curves With Rank >= 5, arXiv preprint (2015). arXiv:1501.03809 [math.NT]
EXAMPLE
(19^4 + 21^4)/2 = 7^4 + 20^4 = 162401.
PROG
(PARI) isA003336(n) = for(k=1, sqrtnint(n\2, 4), ispower(n-k^4, 4) && return(1));
is(n) = isA003336(n) && isA003336(2*n);
(PARI) T=thueinit('x^4+1, 1);
has(n)=#thue(T, n)>0 && !issquare(n)
list(lim)=my(v=List(), x4, t); for(x=1, sqrtnint(lim\=1, 4), x4=x^4; for(y=1, min(sqrtnint(lim-x4, 4), x), t=x4+y^4; if(has(2*t), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 26 2017
CROSSREFS
Sequence in context: A244348 A083633 A043649 * A230925 A204653 A031677
KEYWORD
nonn
AUTHOR
Altug Alkan and Thomas Ordowski, Feb 25 2017
EXTENSIONS
a(10)-a(22) from Giovanni Resta, Feb 25 2017
STATUS
approved