login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282791
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
8
0, 0, 0, 1, 0, 1, 2, 8, 8, 2, 5, 16, 73, 16, 5, 12, 72, 318, 318, 72, 12, 26, 240, 1747, 1952, 1747, 240, 26, 56, 736, 8216, 16584, 16584, 8216, 736, 56, 118, 2352, 38027, 119176, 208559, 119176, 38027, 2352, 118, 244, 7128, 173722, 832218, 2207352, 2207352
OFFSET
1,7
COMMENTS
Table starts
...0.....0.......1.........2...........5............12..............26
...0.....0.......8........16..........72...........240.............736
...1.....8......73.......318........1747..........8216...........38027
...2....16.....318......1952.......16584........119176..........832218
...5....72....1747.....16584......208559.......2207352........22998587
..12...240....8216....119176.....2207352......34974844.......545174028
..26...736...38027....832218....22998587.....545174028.....12713143876
..56..2352..173722...5780340...236744562....8385651160....292288389872
.118..7128..773529..39020884..2372235577..125782952202...6555156469894
.244.21424.3412416.260919192.23556868268.1869100531456.145619095090322
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -3*a(n-4) -2*a(n-5) -a(n-6)
k=2: a(n) = 2*a(n-1) +5*a(n-2) +2*a(n-3) -17*a(n-4) -24*a(n-5) -16*a(n-6)
k=3: [order 12]
k=4: [order 18]
k=5: [order 42]
k=6: [order 60]
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..0. .0..1..0..1. .0..1..0..0. .0..0..1..1. .1..0..1..0
..1..0..0..1. .0..0..1..0. .1..0..0..1. .0..1..0..0. .0..0..1..0
..0..1..0..0. .1..0..0..0. .0..0..1..0. .0..0..0..1. .0..0..0..0
..0..0..0..0. .1..0..1..0. .1..0..0..1. .0..1..0..0. .1..1..1..0
CROSSREFS
Column 1 is A073778(n-1).
Sequence in context: A196775 A021351 A011061 * A242168 A011288 A198234
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 21 2017
STATUS
approved