Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 29 2023 09:46:11
%S 1,3,9,23,63,171,461,1247,3371,9111,24629,66575,179959,486451,1314933,
%T 3554415,9607995,25971519,70204013,189769551,512968999,1386614411,
%U 3748178797,10131759903,27387316427,74031077351,200114546757,540932717135,1462203568951,3952505014627,10684077253253,28880293973327
%N Satisfies the recurrence a(n) = 3*a(n-1)-a(n-2)+a(n-3)-2*a(n-4)+2*a(n-5).
%H Colin Barker, <a href="/A282732/b282732.txt">Table of n, a(n) for n = 0..1000</a>
%H Julien Leroy, Michel Rigo, and Manon Stipulanti, <a href="https://doi.org/10.37236/6581">Behavior of Digital Sequences Through Exotic Numeration Systems</a>, Electronic Journal of Combinatorics 24(1) (2017), #P1.44. See Section 4.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,1,-2,2).
%F G.f.: (1 + x^2 - 2*x^3 + 2*x^4) / (1 - 3*x + x^2 - x^3 + 2*x^4 - 2*x^5). - _Colin Barker_, Mar 04 2017
%p a:=proc(n) option remember;
%p if n=0 then 1
%p elif n=1 then 3
%p elif n=2 then 9
%p elif n=3 then 23
%p elif n=4 then 63
%p else 3*a(n-1)-a(n-2)+a(n-3)-2*a(n-4)+2*a(n-5);
%p fi;
%p end;
%p [seq(a(n),n=0..40)];
%t LinearRecurrence[{3,-1,1,-2,2},{1,3,9,23,63},40] (* _Harvey P. Dale_, Jun 06 2020 *)
%o (PARI) Vec((1 + x^2 - 2*x^3 + 2*x^4) / (1 - 3*x + x^2 - x^3 + 2*x^4 - 2*x^5) + O(x^40)) \\ _Colin Barker_, Mar 04 2017
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Mar 03 2017