login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282732
Satisfies the recurrence a(n) = 3*a(n-1)-a(n-2)+a(n-3)-2*a(n-4)+2*a(n-5).
1
1, 3, 9, 23, 63, 171, 461, 1247, 3371, 9111, 24629, 66575, 179959, 486451, 1314933, 3554415, 9607995, 25971519, 70204013, 189769551, 512968999, 1386614411, 3748178797, 10131759903, 27387316427, 74031077351, 200114546757, 540932717135, 1462203568951, 3952505014627, 10684077253253, 28880293973327
OFFSET
0,2
LINKS
Julien Leroy, Michel Rigo, and Manon Stipulanti, Behavior of Digital Sequences Through Exotic Numeration Systems, Electronic Journal of Combinatorics 24(1) (2017), #P1.44. See Section 4.
FORMULA
G.f.: (1 + x^2 - 2*x^3 + 2*x^4) / (1 - 3*x + x^2 - x^3 + 2*x^4 - 2*x^5). - Colin Barker, Mar 04 2017
MAPLE
a:=proc(n) option remember;
if n=0 then 1
elif n=1 then 3
elif n=2 then 9
elif n=3 then 23
elif n=4 then 63
else 3*a(n-1)-a(n-2)+a(n-3)-2*a(n-4)+2*a(n-5);
fi;
end;
[seq(a(n), n=0..40)];
MATHEMATICA
LinearRecurrence[{3, -1, 1, -2, 2}, {1, 3, 9, 23, 63}, 40] (* Harvey P. Dale, Jun 06 2020 *)
PROG
(PARI) Vec((1 + x^2 - 2*x^3 + 2*x^4) / (1 - 3*x + x^2 - x^3 + 2*x^4 - 2*x^5) + O(x^40)) \\ Colin Barker, Mar 04 2017
CROSSREFS
Sequence in context: A029852 A354645 A371956 * A253244 A018044 A047045
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 03 2017
STATUS
approved