The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A282732 Satisfies the recurrence a(n) = 3*a(n-1)-a(n-2)+a(n-3)-2*a(n-4)+2*a(n-5). 1
 1, 3, 9, 23, 63, 171, 461, 1247, 3371, 9111, 24629, 66575, 179959, 486451, 1314933, 3554415, 9607995, 25971519, 70204013, 189769551, 512968999, 1386614411, 3748178797, 10131759903, 27387316427, 74031077351, 200114546757, 540932717135, 1462203568951, 3952505014627, 10684077253253, 28880293973327 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Julien Leroy, Michel Rigo, Manon Stipulanti, Behavior of Digital Sequences Through Exotic Numeration Systems, Electronic Journal of Combinatorics 24(1) (2017), #P1.44. See Section 4. Index entries for linear recurrences with constant coefficients, signature (3,-1,1,-2,2). FORMULA G.f.: (1 + x^2 - 2*x^3 + 2*x^4) / (1 - 3*x + x^2 - x^3 + 2*x^4 - 2*x^5). - Colin Barker, Mar 04 2017 MAPLE a:=proc(n) option remember; if n=0 then 1 elif n=1 then 3 elif n=2 then 9 elif n=3 then 23 elif n=4 then 63 else 3*a(n-1)-a(n-2)+a(n-3)-2*a(n-4)+2*a(n-5); fi; end; [seq(a(n), n=0..40)]; MATHEMATICA LinearRecurrence[{3, -1, 1, -2, 2}, {1, 3, 9, 23, 63}, 40] (* Harvey P. Dale, Jun 06 2020 *) PROG (PARI) Vec((1 + x^2 - 2*x^3 + 2*x^4) / (1 - 3*x + x^2 - x^3 + 2*x^4 - 2*x^5) + O(x^40)) \\ Colin Barker, Mar 04 2017 CROSSREFS Sequence in context: A077996 A330453 A029852 * A047085 A253244 A018044 Adjacent sequences:  A282729 A282730 A282731 * A282733 A282734 A282735 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 09:54 EDT 2020. Contains 336423 sequences. (Running on oeis4.)