%I #7 Feb 27 2017 17:22:07
%S 1,1,2,2,3,3,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,
%T 7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,10,10,10,
%U 10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12
%N a(n) = number of terms of A003052 that are <= n.
%H U. Zannier, <a href="http://www.ams.org/journals/proc/1982-085-01/S0002-9939-1982-0647887-4/">On the distribution of self-numbers</a>, Proc. Amer. Math. Soc. 85 (1982), 10-14.
%F Zannier shows that a(n) = L*n + O(*log x)^2), where L is approximately 10.227...
%p # Assumes the array b52 contains a list of the terms in A003052.
%p p:=[]; t:=1; m:=b52[t]; c:=1;
%p for n from 1 to 1000 do
%p if n=m then c:=c+1; t:=t+1; m:=b52[t]; fi;
%p p:=[op(p),c];
%p od:
%p p;
%Y Cf. A003052.
%K nonn
%O 1,3
%A _N. J. A. Sloane_, Feb 27 2017