login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282633
Numbers n such that n^2 + 1 is the sum of two proper prime powers (A246547) in more than one way.
1
47, 73, 83, 133, 157, 173, 187, 191, 203, 217, 317, 319, 353, 437, 463, 467, 487, 499, 557, 577, 583, 593, 599, 613, 623, 697, 703, 727, 733, 767, 829, 857, 863, 871, 931, 983, 1013, 1027, 1033, 1067, 1087, 1097, 1123, 1139, 1177, 1267, 1279, 1321, 1327, 1333, 1363, 1403, 1409, 1433, 1453, 1477, 1487, 1493, 1507, 1517, 1543, 1567, 1603, 1607, 1613
OFFSET
1,1
LINKS
EXAMPLE
83 is a term because 83^2 + 1 = 7^4 + 67^2 = 43^2 + 71^2.
MAPLE
N:= 10^8: # to get all terms <= sqrt(N-1).
PP:= sort([seq(seq(p^k, k=2..floor(log[p](N))), p = select(isprime, [2, seq(i, i=3..floor(sqrt(N)), 2)]))]):
npp:= nops(PP):
res:= {}: R:= 'R':
for i from 2 to npp do
for j from 1 to i-1 do
q:= PP[i]+PP[j];
if q > N then break fi;
if issqr(q-1) then
if assigned(R[q]) then res:= res union {q}
else R[q]:= 1
fi fi
od od:
sort(convert(map(t -> sqrt(t-1), res), list));
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel and Altug Alkan, Feb 19 2017
STATUS
approved