%I #4 Feb 15 2017 10:21:59
%S 0,0,0,0,0,0,0,2,2,0,0,12,96,12,0,0,58,784,784,58,0,0,280,6498,10232,
%T 6498,280,0,0,1276,50962,152726,152726,50962,1276,0,0,5592,378380,
%U 2129756,3997136,2129756,378380,5592,0,0,24004,2744000,28043694,98841792
%N T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than three of its king-move neighbors, with the exception of exactly one element.
%C Table starts
%C .0.....0........0..........0.............0...............0.................0
%C .0.....0........2.........12............58.............280..............1276
%C .0.....2.......96........784..........6498...........50962............378380
%C .0....12......784......10232........152726.........2129756..........28043694
%C .0....58.....6498.....152726.......3997136........98841792........2301995900
%C .0...280....50962....2129756......98841792......4309285780......177265299282
%C .0..1276...378380...28043694....2301995900....177265299282....12904221882656
%C .0..5592..2744000..363894560...52857163712...7188315304848...926611650146754
%C .0.24004.19498404.4627276420.1190131334489.285685036982550.65222398663792276
%H R. H. Hardin, <a href="/A282441/b282441.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: [order 12]
%F k=3: [order 18]
%F k=4: [order 34]
%F k=5: [order 88]
%e Some solutions for n=4 k=4
%e ..0..0..0..0. .1..0..0..1. .0..0..0..0. .1..1..1..0. .1..0..1..1
%e ..0..1..1..0. .0..0..0..1. .0..0..1..1. .0..0..1..1. .0..0..1..1
%e ..0..1..0..1. .0..1..1..1. .1..1..0..1. .1..0..0..1. .0..1..0..0
%e ..1..1..0..1. .1..0..1..0. .0..0..1..1. .0..0..1..0. .1..0..1..1
%K nonn,tabl
%O 1,8
%A _R. H. Hardin_, Feb 15 2017