login
A282441
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than three of its king-move neighbors, with the exception of exactly one element.
7
0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 12, 96, 12, 0, 0, 58, 784, 784, 58, 0, 0, 280, 6498, 10232, 6498, 280, 0, 0, 1276, 50962, 152726, 152726, 50962, 1276, 0, 0, 5592, 378380, 2129756, 3997136, 2129756, 378380, 5592, 0, 0, 24004, 2744000, 28043694, 98841792
OFFSET
1,8
COMMENTS
Table starts
.0.....0........0..........0.............0...............0.................0
.0.....0........2.........12............58.............280..............1276
.0.....2.......96........784..........6498...........50962............378380
.0....12......784......10232........152726.........2129756..........28043694
.0....58.....6498.....152726.......3997136........98841792........2301995900
.0...280....50962....2129756......98841792......4309285780......177265299282
.0..1276...378380...28043694....2301995900....177265299282....12904221882656
.0..5592..2744000..363894560...52857163712...7188315304848...926611650146754
.0.24004.19498404.4627276420.1190131334489.285685036982550.65222398663792276
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [order 12]
k=3: [order 18]
k=4: [order 34]
k=5: [order 88]
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0. .1..0..0..1. .0..0..0..0. .1..1..1..0. .1..0..1..1
..0..1..1..0. .0..0..0..1. .0..0..1..1. .0..0..1..1. .0..0..1..1
..0..1..0..1. .0..1..1..1. .1..1..0..1. .1..0..0..1. .0..1..0..0
..1..1..0..1. .1..0..1..0. .0..0..1..1. .0..0..1..0. .1..0..1..1
CROSSREFS
Sequence in context: A283494 A353254 A281034 * A281988 A190389 A285485
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 15 2017
STATUS
approved