OFFSET
1,1
COMMENTS
All the palindromic numbers in base 5 with an even number of digits belong to the sequence.
Here the fulcrum is between two digits while in the sequence from A282107 to A282115 is one of the digits.
Numbers with this property in all the bases from 2 to 5 are: 3120, 9615, 10366, 16610, 17812, 22129, 33329, 100726, 163800, 202039, 208172, 212636, 258221, 270337, 298575, 420240, 462608, 475782, 492420, 523679, 549537, 550200, 587842, 594511, 610273, 655350, 671844, 675872, 681280, 730161, 738480, 840798, 842614, 848655, 855973, 925515, 987751, ...
LINKS
Paolo P. Lava, Table of n, a(n) for n = 1..10000
EXAMPLE
447 in base 5 is 3242. If we split the number in 32 and 42 we have 2*1 + 3*2 = 8 for the left side and 4*1 + 2*2 = 8 for the right one.
MAPLE
P:=proc(n, h) local a, j, k: a:=convert(n, base, h):
for k from 1 to nops(a)-1 do
if add(a[j]*(k-j+1), j=1..k)=add(a[j]*(j-k), j=k+1..nops(a))
then RETURN(n); break: fi: od: end: seq(P(i, 5), i=1..10^3);
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Giovanni Resta, Feb 07 2017
STATUS
approved