

A282107


Numbers n with k digits in base x (MSD(n)_x=d_k, LSD(n)_x=d_1) such that, chosen one of their digits in position d_k < j < d_1, is Sum_{i=j+1..k}{(ij)*d_i} = Sum_{i=1..j1}{(ji)*d_i}. Case x = 2.


18



5, 7, 10, 14, 17, 20, 21, 27, 28, 31, 34, 35, 39, 40, 42, 49, 54, 56, 57, 62, 65, 68, 70, 73, 78, 80, 84, 85, 93, 98, 99, 107, 108, 112, 114, 119, 124, 127, 130, 133, 136, 140, 141, 146, 147, 155, 156, 160, 161, 167, 168, 170, 175, 177, 186, 196, 198, 201, 214
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

All the palindromic numbers in base 2 with an odd number of digits belong to the sequence.
Here the fulcrum is one of the digits while in the sequence from A282143 to A282151 is between two digits.


LINKS

Paolo P. Lava, Table of n, a(n) for n = 1..10000


EXAMPLE

897 in base 2 is 1110000001. If j = 7 (the first 0 from left) we have 1*1 + 1*2 + 1*3 = 6 for the left side and 0*1 + 0*2 + 0*3 + 0*4 + 0*5 + 1*6 = 6 for the right one.


MAPLE

P:=proc(n, h) local a, j, k: a:=convert(n, base, h):
for k from 1 to nops(a)1 do
if add(a[j]*(kj), j=1..k)=add(a[j]*(jk), j=k+1..nops(a))
then RETURN(n); break: fi: od: end: seq(P(i, 2), i=1..10^3);


CROSSREFS

Cf. A282108  A282115.
Sequence in context: A065503 A152001 A297000 * A022441 A156243 A020942
Adjacent sequences: A282104 A282105 A282106 * A282108 A282109 A282110


KEYWORD

nonn,base,easy


AUTHOR

Paolo P. Lava, Feb 06 2017


STATUS

approved



