login
A282112
Numbers n with k digits in base x (MSD(n)=d_k, LSD(n)=d_1) such that, chosen one of their digits in position d_k < j < d_1, is Sum_{i=j+1..k}{(i-j)*d_i} = Sum_{i=1..j-1}{(j-i)*d_i}. Case x = 7.
4
50, 57, 64, 71, 78, 85, 92, 100, 107, 114, 121, 128, 135, 142, 150, 157, 164, 171, 178, 185, 192, 200, 207, 214, 221, 228, 235, 242, 250, 257, 264, 271, 278, 285, 292, 300, 307, 314, 321, 328, 335, 342, 345, 350, 352, 359, 366, 373, 380, 387, 395, 399, 402, 409
OFFSET
1,1
COMMENTS
All the palindromic numbers in base 7 with an odd number of digits belong to the sequence.
Here the fulcrum is one of the digits while in the sequence from A282143 to A282151 is between two digits.
Numbers with this property in all the bases from 2 to 7 are: 53060873, 55161152, 151009636, 343518281, 505587488, 513015908, ...- Giovanni Resta, Feb 13 2017
LINKS
EXAMPLE
409 in base 7 is 1123. If j = 2 (digit 2) we have 1*1 + 1*2 = 3 for the left side and 3*1 = 3 for the right one.
MAPLE
P:=proc(n, h) local a, j, k: a:=convert(n, base, h):
for k from 1 to nops(a)-1 do
if add(a[j]*(k-j), j=1..k)=add(a[j]*(j-k), j=k+1..nops(a)) then
RETURN(n); break: fi: od: end: seq(P(i, 7), i=1..10^3);
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Feb 06 2017
STATUS
approved