login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281232
Numbers k such that k+2 divides concat(k, k+1).
2
1, 5, 65, 665, 6665, 66665, 666665, 2857141, 6666665, 66666665, 666666665, 1052631577, 6666666665, 66666666665, 666666666665, 2857142857141, 6666666666665, 11764705882351, 66666666666665, 666666666666665, 6666666666666665, 66666666666666665, 666666666666666665
OFFSET
1,2
COMMENTS
Numbers of the form 60*(10^j - 1)/9 + 5, for j >= 0, belong to the sequence.
The ratios are: 4, 8, 98, 998, 9998, 99998, 999998, 9999994, 9999998, 99999998, 999999998, 9999999982, 9999999998, ...
Numbers of the form t(j) = 20*(10^(6*j) - 1)/7 + 1, for j >= 0, belong to the sequence, because (10^(6*j+1)*t(j) + t(j) + 1)/(t(j) + 2) = 10^(6*j+1) - 6. - Bruno Berselli, Oct 09 2018
FORMULA
a(n) = A088797(n) - 2. - Alois P. Heinz, Jan 19 2017
EXAMPLE
concat(2857141, 2857142) / 2857143 = 28571412857142 / 2857143 = 9999994.
MAPLE
with(numtheory): P:=proc(q) local c, n;
for n from 1 to q do c:=n*10^(ilog10(n+1)+1)+n+1;
if type(c/(n+2), integer) then print(n); fi; od; end: P(10^9);
MATHEMATICA
Select[Range[10^7], Divisible[FromDigits@ Flatten@ Map[IntegerDigits, {#, # + 1}], # + 2] &] (* Michael De Vlieger, Jan 19 2017 *)
PROG
(PARI) isok(n) = !(eval(Str(n, n+1)) % (n+2)); \\ Michel Marcus, Oct 09 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jan 18 2017
EXTENSIONS
More terms from Alois P. Heinz, Jan 19 2017
STATUS
approved