OFFSET
1,4
COMMENTS
Let I(n) be defined by I(n) = Integral_{x>=0} Product_{k=1..n} Sinc(x/k) dx.
I(1) = I(2) = I(3) = Pi/2, however I(4) = Pi/2 - Pi/3456.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..15
EXAMPLE
I(4) = 1727*Pi/3456. So a(4) = 1727.
I(5) = 20652479*Pi/41472000. So a(5) = 20652479.
I(6) = 2059268143*Pi/4147200000. So a(6) = 2059268143.
I(7) = 24860948333867803*Pi/50185433088000000. So a(7) = 24860948333867803.
MATHEMATICA
f[n_] := Numerator[Integrate[Product[Sinc[x/k], {k, n}], {x, 0, Infinity}]/Pi]; Array[f, 11] (* Robert G. Wilson v, Jan 29 2017 *)
CROSSREFS
KEYWORD
nonn,frac,more
AUTHOR
Seiichi Manyama, Jan 08 2017
EXTENSIONS
a(8)-a(11) from Alois P. Heinz, Jan 09 2017
STATUS
approved