login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280796
E.g.f. sqrt(1 - F(x)^2), where F(F(x)) = sin(x).
2
1, -1, -1, -13, -367, -18549, -1465953, -166262441, -25526158559, -5088504559209, -1277203721141441, -394351281523218693, -147069662568684159055, -65255038602423680990301, -33992871584988519888865825, -20539580068386370855911967393, -14240009948449682448965044873663, -11224227759618581623496389602591953, -9984932631658989030110444663072663937, -9963529315662216629464111409263738683133
OFFSET
0,4
COMMENTS
This sequence appears to consist entirely of integers.
LINKS
FORMULA
E.g.f. A(x) satisfies: A(F(x)) = cos(x), where F(F(x)) = sin(x).
EXAMPLE
E.g.f.: A(x) = 1 - x^2/2! - x^4/4! - 13*x^6/6! - 367*x^8/8! - 18549*x^10/10! - 1465953*x^12/12! - 166262441*x^14/14! - 25526158559*x^16/16! - 5088504559209*x^18/18! - 1277203721141441*x^20/20! - 394351281523218693*x^22/22! - 147069662568684159055*x^24/24! - 65255038602423680990301*x^26/26! +...
such that A(x) = sqrt(1 - F(x)^2) where F(F(x)) = sin(x) and F(x) begins:
F(x) = x - 1/2*x^3/3! - 3/4*x^5/5! - 53/8*x^7/7! - 1863/16*x^9/9! - 92713/32*x^11/11! - 3710155/64*x^13/13! + 594673187/128*x^15/15! + 329366540401/256*x^17/17! + 104491760828591/512*x^19/19! + 19610322215706989/1024*x^21/21! - 5244397496803513989/2048*x^23/23! - 7592640928150019948759/4096*x^25/25! +...
Also, e.g.f. A(x) satisfies: A(F(x)) = cos(x).
PROG
(PARI) {a(n)=local(A, B, F); F=sin(x+O(x^(2*n+1))); A=F; for(i=0, 2*n-1, B=serreverse(A); A=(A+subst(B, x, F))/2); (2*n)!*polcoeff(sqrt(1-A^2), 2*n, x)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A165391 A061015 A330255 * A183472 A009040 A009085
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 13 2017
STATUS
approved